
Real Time Systems

Prof. Neelamani Samal
Department Of Computer Science and Engineering

Real Time Systems - Introduction
� Real-time systems are defined as those systems in which the correctness of the
system depends not only on the logical result of computation, but also on the time at
which the results are produced.

• A real time system has performance deadlines on its computations and actions.

• Deadline: time when execution must be completed. A deadline is either a point in
time (time-driven) or a delta-time interval (event- driven) by which a system action
must occur.

Hard deadline: late data may be a bad data. Soft

deadline: late data may be a good data.

� Hard real-time systems (e.g., Avionic control).
� Firm real-time systems (e.g., Banking).
� Soft real-time systems (e.g., Video on demand).

Applications

I. Industrial Applications(Chemical Plant Control, Automated Car
Assembly Plant)

II. Medical(Robotused in recovery of displaced radioactive
material)

III. Peripheral Equipment(Laser Printer, Scanner)
IV. Automotive and Transportation(Multi Point fuelinjection System)
V. Telecommunication application(Cellular Systems)

VI. Aerospace(Computer on Board an aircraft)
VII. Internet and Multimedia(Video Conferencing)

VIII. Consumer Electronics(Cell Phones)
IX. Defense applications(Missile Guidance System)
X. Miscellaneous Applications(Railway Reservation System)

Basic Model of a RTS

Characteristics of RTS
1. Time constraints(dead line associated with tasks)

2. New Correctness Criterion(not only logical correctness, time is also important)

3. Embedded(RTS are embedded in nature)

4. Safety – Criticality(failure of the system cause extensive damages)

5. Concurrency(RTS must process concurrent data)

6. Distributed and feedback structure

7. Task Criticality(is a measure of the cost of failure of a task)

8. Custom hardware

9. Reactive(RTS are often reactive means an ongoing interaction between system

and environment is maintained)

10. Stability

11. Exception handling

Safety and Reliability

� In Traditional system safety and reliability are independent issues

� In RTS safety and reliability are dependent issues

� Fail safe state: of a system is one which if entered when the system fails ,no

damage would result.

� Safety critical systems: is one whose failure can cause severe damages

How to achieve high reliability

Steps to achieve highly reliable software
1. Error avoidance
2. Error detection and removal

3.Fault tolerance Hardware Fault Tolerance

4. Built In Self Test
5. Triple modular redundancy

Software fault tolerance
1. N-version programming

� an adaptation of TMR(Triple modular Redundancy) Technique
� Is not very successful in achieving fault tolerance

2. Recovery block

Types of RT Task
RTT can be classified based on the consequences of a task missing its

deadline
� Hard RTT(robot)
� Firm RTT(video conferencing)
� Soft RTT(url)
� Non RTT(e-mail)

Timing constraints

� Events in a RTS:an event may be either by the system or its
environment. Based on this, events can be classified into

1. Stimulus Events: are generated by the
environment and act on the system

2. Response Events: are usually produced by the system in
andact on theresponse to some stimulus

events, environment
� Classification of Timing Constraints

1. Performance constraints: are imposed on the response of the
system. it ensure that the system performs satisfactorily

2. Behavioral constraints: are imposed on the stimuli generated
by the environment.

Each of performance and behavioral
constraints can further classified into

1. Delay Constraint
2. Duration Constraint
3. Deadline constraint

Deadline Constraint:
capturesthe permissible maximum

separation between e1 and e2. ie the second event must follow the
first event within the permissible maximum separation time . where
t(e1) and t(e2) are the time stamps of e1 and e2,d is the deadline
and ∆ is the actual separation in time between the occurrence of
two events

Duration Constraint: Specifies the time period over which the
event acts. it can be either minimum or maximum.

Modeling timing constraints

� It can serve as a formal specification of the system
� Finite State Machine
� is used to model traditional systems.
� at any point of time a system can be in any one of a state.
� State is represented by a circle.
� A state change is called state transition
� A transition from one state to another state is represented by

drawing a directed arc from source to destination.
� Extended Finite State Machine
� Used to model time constraints
� It extends FSM by incorporating the action of setting a timer

and the expiry event of a timer

SS Constraints

RS Constraints

SR Constraints

RR Constraints

RTT Scheduling
� Task instance: task is generated when some specificevent occurs
� Relative deadline and Absolute deadline
Absolute deadline of a task is the absolute time value by which the results from

the task are expected
Relative deadline is the time interval between the start of the task and the

instance at which deadline occurs

� Response time
� Task Precedence: a task is said to precede another task ,if

the first task must complete before the second task can stat
� Data sharing

Types of Real-Time Tasks
� Periodic tasks

- Time-driven.
-repeats after a certain fixed time interval
-represented by
E.g.: monitoring temperature of a patient in an ICU.

� Aperiodic tasks
-Event-driven.
-arise at random instants
-E.g.: Task activated upon detecting change in patient’s condition.

� Sporadic Tasks
� Recurs at random instants
� Represented by
� E.g: emergency message sending

pi : task period ai : arrival time ri : ready time di : deadline
gi :minimum separation between the consecutive instances of a task

ei : worst case execution time.

RTT scheduling basic concepts

•Proficient scheduler
•Optimal scheduler
•Scheduling points
•Preemptive scheduler
•Utilization

Classification of RTT Scheduling algorithms

❖Another classification is based on task acceptance test
1. Planning Based
2. Best Effort

❖ Another classification is based on the target platform on which
the tasks are to be run

1. Uniprocessor
2. Multiprocessor
3. Distributed

Clock driven Scheduling
� Scheduling points are determined by timer interrupts.
� Also Called off line scheduler because it fix the schedule before the system starts to

run.
1. Table Driven Scheduling
� Precompute which task would run when and store this

schedule in a table at the time the system is designed
or configured

� Application programmer can set his own schedule

� Schedule table used to store the schedule
� Major cycle

2. Cyclic scheduler

•Very popular and extensively used in industry
•Simple , efficient and easy to program

•Repeats a precomputed schedule, precomputed schedule needs to be stored
only for one Major cycle.

•Major cycle is divided into one or more minor cycles,and is called frame

•Scheduling points occur at frame boundaries

�Each task is designed to run in one or more frames.
�Assignment of tasks to frame is stored in a schedule table

� Frame size should satisfy the following constraints
1. Minimum context switching
2. Minimization of table size
3. Satisfaction of task deadline

Generalized task scheduler

� Initially a schedule(assignment of task to frames) for periodic
task is prepared, sporadic and aperiodic task are scheduled in
the slack times that may available in the frame

Hybrid scheduling

Time sliced Round Robin scheduler
� Preemptive scheduling method
�Ready tasks are held in circular queue
�Time slice

EVENT DRIVEN SCHEDULER

• Overcomes the shortcomings of other types(wastage of frame size)
• Can handle aperiodic and sporadic tasks more proficiently
• Less efficient and deploy complex scheduling algorithms.
• Less suitable for embedded applications.
• Scheduling points are defined by task completion and task arrivals

events.
• Are normally preemptive

Foreground and background scheduler

� Simplest priority driven scheduler.
� RTT in an application is run as foreground tasks.
� Sporadic , aperiodic and non RT are run as background tasks.
� Among foreground tasks at every scheduling point

the highest priority task is taken up for scheduling.
� A background task can run when none of the foreground is ready

Earliest deadline first(EDF)

� A dynamic priority scheduling algorithm
� At every scheduling point task having the shortest deadline is

taken up for scheduling.
� A task set is schedulable under EDF,if and only if it satisfies

the condition that the total processor utilization due to the
task set is less than 1

� Is an optimal uniprocessor scheduling algorithm means if a
set of tasks is unschedulable under EDF,then no other
scheduling algorithm can feasibly schedule this task set.

� A variant is Minimum Laxity First(MLF)
• Every scheduling point a laxity value is computed for every

task and task having minimum laxity is executed first.
• Laxity measures the execution time

� Implementation of EDF
1. Maintain all tasks that are ready for execution in a queue, at

 every preemption point task having shortest deadline scheduled. its
inefficient

2. Maintain all ready tasks in a priority queue
3. A FIFO queue maintained for tasks, based on relative deadline and

absolute deadline
� Shortcomings

Rate monotonic algorithm

� Important Event driven optimalStatic priority algorithm used in
practical applications.

� Assigns priority to tasks based on their rate of occurrence.
� Priority of a task is directly proportional to its rate

� Schedulability test
1. Necessary condition: total cpu utilization due to all the task in

the task set should be less than 1
2. Sufficient condition:

� Advantage RMA
1. RMA Transient overload handling: means when a lower priority
 task doesn’t complete within its planned completion time ,cant make any

higher priority task to miss its deadline .

� Disadvantages
1. Difficult to support aperiodic and sporadic task.
2. Is not optimal when task periods and deadlines are

differ

Deadline monotonic algorithm

�A variant of RMA and assigns priorities to tasks based on
their deadlines, rather than assigning priorities based on task
periods .

�Assigns high priority to tasks with shorter deadline
� Issues in using RMA in practical situations long

periods(Period
1. Handling critical tasks with

transformation technique)
2. Handling aperiodic and sporadic tasks
� Aperiodic server
1. deferrable server(tickets are replenished at regular intervals

,independent of actual ticket usage)
2. sporadic server(replenishment time depends on exact ticket

usage time, guarantees a minimum separation between two
instances of a task)

3. Coping with limited priority levels(assigning priority to task)
a. Uniform scheme(all the tasks in the application are uniformly

 divided among the available priority levels, if its not possible then more
tasks should be made to share the lower priority levels)

b. Arithmetic scheme(the number of tasks assigned to different priority
levels form an arithmetic progression. Let N be the number of tasks then
N=r+2r+3r+..nr ,where n be the total number of priority levels)

c. Geometric scheme(the number of tasks assigned to different priority
levels form a geometric progression
N=r+kr2+kr3+..krn

d. Logarithmic scheme(shorter period tasks should be allotted distinct
priority levels and many lower priority tasks on the other hand can be
clubbed together at the same priority levels without causing any problem
to the schedulability of HP Task)

Resource Sharing Among RTT

● Until now, we have assumed that tasks are independent.

● We now remove this restriction.

● We first consider how to adapt the analysis discussed previously when tasks

access shared resources.

● Later, in our discussion of distributed systems, we will consider tasks that have

precedence constraints.

Resource Access Control Protocols

● We now consider several protocols for allocating resources that control priority inversions

and/or deadlocks.

● From now on, the term “critical section” is taken to mean “outermost critical section” unless

specified otherwise.

Non preemptive Critical Section Protocol

The simplest protocol: just execute each critical section nonpreemptively. If tasks are indexed

by priority (or relative deadline in the case of EDF), then task Ti has a blocking term equal to

maxi+1 ≤ k ≤ n ck , where ck is the execution cost of the longest critical section of Tk

Resource Sharing Among RTT

● Serially reusable resource
● Non preemptable resource

PRIORITY INVERSION

● Simple priority inversion
● Unbounded priority inversion

Unbounded priority inversion

Priority inheritance protocol (pip)

� Priority Inheritance Protocol (PIP) is a technique which is used for sharing critical resources
among different tasks. This allows the sharing of critical resources among different without the
occurrence of unbounded priority inversions.

� Is a simple technique to share CR among tasks without incurring unbounded priority inversions.

� The essence of this protocol is that whenever a task suffers priority inversion, the priority of the
lower priority task holding the resource is raised through a priority inheritance mechanism. it
enables it to complete its usage of the CR as early as possible without having to suffer preemption
from intermediate tasks.

� When several tasks waiting for a resource ,the task holding the resource inherits the highest
priority of all tasks waiting for the resource.(if this priority is greater than its own priority)

Basic Concept of PIP :

� The basic concept of PIP is that when a task goes through priority inversion, the
priority of the lower priority task which has the critical resource is increased by the
priority inheritance mechanism.

� It allows this task to use the critical resource as early as possible without going
through the preemption.

� It avoids the unbounded priority inversion.

Working of PIP :

● When several tasks are waiting for the same critical resource, the task which is currently holding this

critical resource is given the highest priority among all the tasks which are waiting for the same critical

resource.

● Now after the lower priority task having the critical resource is given the highest priority then the

intermediate priority tasks can not preempt this task. This helps in avoiding the unbounded priority

inversion.

● When the task which is given the highest priority among all tasks, finishes the job and releases the critical

resource then it gets back to its original priority value (which may be less or equal).

● If a task is holding multiple critical resources then after releasing one critical resource it can not go back to

it original priority value. In this case it inherits the highest priority among all tasks waiting for the same

critical resource.

If the critical resource is free then

 allocate the resource

If the critical resource is held by higher priority task then

 wait for the resource

If the critical resource is held by lower priority task

 {

 lower priority task is provided the highest priority

 other tasks wait for the resource
 }

Advantages of PIP :

Priority Inheritance protocol has the following advantages:

● It allows the different priority tasks to share the critical resources.

● The most prominent advantage with Priority Inheritance Protocol is that it

avoids the unbounded priority inversion.

Disadvantages of PIP :

Priority Inheritance Protocol has two major problems which may occur:

Deadlock –
► There is possibility of deadlock in the priority inheritance protocol.

For example, there are two tasks T1 and T2. Suppose T1 has the higher

priority than T2. T2 starts running first and holds the critical resource CR2.

► After that, T1 arrives and preempts T2. T1 holds critical resource CR1 and

also tries to hold CR2 which is held by T2. Now T1 blocks and T2 inherits

the priority of T1 according to PIP. T2 starts execution and now T2 tries to

hold CR1 which is held by T1.

► Thus, both T1 and T2 are deadlocked.

● Chain Blocking –

► When a task goes through priority inversion each time it needs a resource

then this process is called chain blocking.

► For example, there are two tasks T1 and T2. Suppose T1 has the higher

priority than T2. T2 holds the critical resource CR1 and CR2. T1 arrives and

requests for CR1. T2 undergoes the priority inversion according to PIP.

► Now, T1 request CR2, again T2 goes for priority inversion according to PIP.

Hence, multiple priority inversion to hold the critical resource leads to

chain blocking

PIP- Two important problems

1. Deadlock
consider following sequence of actions by two tasks

T1 and T2,which need access to two shared CR1 and CR2
T1 :Lock CR1,Lock CR2,Unlock CR2, Unlock CR1
T2: Lock CR2,Lock CR1,Unlock CR1, Unlock CR2

i. T1 has higher priority than T2
ii. T2 starts running first and locks CR2

iii. T1 arrives ,preempts T2 and starts executing
iv. T1 locks CR1 and then tries to lock CR2 which is being held by T2
v. T1 blocks and T2 inherits T1 ‘s priority according to the PIP

vi. T2 resumes its execution and after sometime needs to lock
the resource CR1 being held by T1

vii. T1 and T2 are both deadlocked

� Chain Blocking
A task is said to undergo chain blocking ,if each time it needs a

resource ,it undergoes priority inversion

1. T1 needs several resources ,and high priority than T2

2. T2 holding CR1 and CR2 and T1 arrives and requests to lock CR1.it

undergoes priority inversion and causes T2 to inherit its priority

3. As soon as T2 release CR1 its priority reduces to its original priority

and T1 is able to lock CR1

4. After executing for some time T1 requests to lock CR2

.This time it again undergoes priority inversion since T2 is holding

CR2. T1 waits until T2 release CR2

Highest Locker Protocol (HLP)

► Highest Locker Protocol (HLP) is a critical resource sharing protocol which is

an extension of Priority Inheritance Protocol which was introduced to overcome

the limitations of Priority Inheritance Protocol.

► In this critical resource sharing protocol, every critical resource is assigned a

ceiling priority value.

► This value is the maximum of priorities of all those tasks which may request to

hold this critical resource.

Basic Concept of HLP :

► The basic concept of Highest Locker Protocol is based on the ceiling priority

value.

► When a task holds a critical resource its priority is changed to the ceiling

priority vale of the critical resource.

► If a task holds multiple critical resources, then maximum of all ceiling priorities

values is assigned as priority of the task.

Working of HLP :

● Resources required by each task is found before the compile time.

● Initially a ceiling priority value is assigned to each critical resource.

● Ceiling priority value of a critical resource is calculated as the maximum of priorities

of all those tasks which may request to hold this critical resource.

● When a task holds a critical resource, corresponding ceiling priority value is

assigned as priority to the task.

● Task acquiring multiple critical resources is assigned maximum of all ceiling priority

value.

● Further the execution is done on the basis of allotted priorities.

Features of HLP :

● When HLP is used for resource sharing, once the task holds the required critical

resource then it is not blocked any further.

● Before a task can hold one resource, all the resources that may be required by

this task should be free.

● It prevents tasks from going into deadlock or chain blocking.

Advantages of HLP :
Following are the advantages of Highest Locker Protocol:

● It is useful into critical resource sharing by several tasks.

● It avoids the unbounded priority inversion among tasks.

● It overcomes the limitations of priority inheritance protocol.

● It prevents from deadlock as a task hols one resource, all other required resources by

this task must be free.

● A task can not go into chain blocking using Highest Locker Protocol.

Disadvantages of HLP :
The major disadvantage of Highest Locker Protocol is Inheritance related Priority Inversion.

Inheritance related Priority Inversion occurs when the priority value of low priority task
acquiring a critical resource is assigned the highest priority using ceiling rule then the
intermediate priority tasks that do not need the resource cannot execute and undergo
Inheritance related Priority Conversion.

Highest Locker Protocol (HLP): Priority Ceiling Protocol (PCP) :

● Highest Locker Protocol (HLP) is a critical
resource sharing protocol which is an
extension of Priority Inheritance Protocol (PIP)
which was introduced to overcome the
limitations of Priority Inheritance Protocol
(PIP).

● In this critical resource sharing protocol, every
critical resource is assigned a ceiling priority
value.

● This value is the maximum of priorities of all
those tasks which may request to hold this
critical resource.

● When a task holds a critical resource its
priority is changed to the ceiling priority vale of
the critical resource. If a task holds multiple
critical resources, then maximum of all ceiling
priorities values is assigned as priority of the
task.

● Priority Ceiling Protocol (PCP) is an
extension of Priority Inheritance Protocol
(PIP) and Highest Locker Protocol (HLP).

● It solves the problem of unbounded
priority inversion of Priority Inheritance
Protocol, deadlock and chain blocking of
Highest Locker Protocol and also
minimizes the inheritance-related
inversion which was an also a limitation of
Highest Locker Protocol.

● It is not a greedy approach like Priority
Inheritance Protocol. In PCP, it is possible
that a task may be denied for access
although the resources is free.

https://www.google.com/url?q=https://www.geeksforgeeks.org/highest-locker-protocol-hlp/&sa=D&source=editors&ust=1661492953436599&usg=AOvVaw3j_3r_tkNmL2VO_MgpZYnd
https://www.google.com/url?q=https://www.geeksforgeeks.org/priority-ceiling-protocol/&sa=D&source=editors&ust=1661492953436781&usg=AOvVaw2a9zrB9OdXHsjS7TDQsYw1

Priority Ceiling Protocol

► Priority Ceiling Protocol is a job task synchronization protocol in a real-time

system that is better than Priority inheritance protocol in many ways. Real-Time

Systems are multitasking systems that involve the use of semaphore variables,

signals, and events for job synchronization.

► In Priority ceiling protocol an assumption is made that all the jobs in the

system have a fixed priority. It does not fall into a deadlock state.

► The chained blocking problem of the Priority Inheritance Protocol is resolved in

the Priority Ceiling Protocol.

The basic properties of Priority Ceiling Protocols are:

1. Each of the resources in the system is assigned a priority ceiling.

2. The assigned priority ceiling is determined by the highest priority among all the jobs which may

acquire the resource.

3. It makes use of more than one resource or semaphore variable, thus eliminating chain blocking.

4. A job is assigned a lock on a resource if no other job has acquired lock on that resource.

5. A job J, can acquire a lock only if the job’s priority is strictly greater than the priority ceilings of

all the locks held by other jobs.

6. If a high priority job has been blocked by a resource, then the job holding that resource gets the

priority of the high priority task.

7. Once the resource is released, the priority is reset back to the original.

8. In the worst case, the highest priority job J1 can be blocked by T lower priority tasks in the

system when J1 has to access T semaphores to finish its execution.

Highest locker protocol(hlp)

� Extension of PIP

� Every CR is assigned a ceiling priority value

� Ceiling priority of a CR is defined as the maximum of the priorities of all

tasks which may request to use this resource.

� when a task acquires a resource its priority is set equal to the ceiling

priority of all its locked resources, if the task holds multiple resources then

it inherits the highest ceiling priority of all its locked resources.

� Ceiling priority of a resource Ri be Ceil(Ri) priority

of a task Tj is pri(Tj)

Ceil(Ri) =max({ pri(Tj) / Tj needs Ri})

Theorem

When HLP is used for resource sharing once a task gets a resource required by
it. It is not blocked any further.

Corollary 1.
under HLP before a task can acquire one resource ,all the resources that might
be required by it must be free.

Corollary 2.
a task can’t undergo chain blocking in HLP

� Shortcomings
1. Inheritance related inversion

when the priority value of a low priority task holding a resource is raised to
a high value by the ceiling rule, the intermediate priority tasks not needing the
resource cannot execute and are said to undergo inheritance related inversion

Priority ceiling protocol(pcp)
� Minimizing inheritance related inversions

� A resource may not be granted to a requesting task even if the resource is free

� Associates a ceiling value with every resource, that is the maximum of the

priority values of all tasks that might use the resource

� an OS variable called CSC(Current System Ceiling) is used to keep track of

the maximum ceiling value of all the resources that are in use at any instant of

time

CSC=max({Ceil(CRi)/CRi is currently in use})

� CSC is initialized to 0(lower priority than the least priority task in the system)

� Resourcesharing among tasks under PCP is regulated using two
rules

Resource Grant Rule: consist of two clauses. these two clauses are
applied when a task requests to block a resource

● HIGHEST LOCKER PROTOCOL ● PRIORITY CEILING PROTOCOL

● It is a critical resource sharing protocol which is an
extension of PIP.

● It is a critical resource sharing protocol which is an
extension of PIP and HLP.

● It overcomes the limitations of PIP. ● It overcomes the limitations of PIP and HLP.

● It requires moderate support from the operating system.
● While it requires maximum support from the operating

system.

● It is the least efficient among all resource sharing
protocols.

● While it is the most efficient one among all resource
sharing protocols.

● It maximizes the inheritance-related inversions.
● While it is able to minimize the inheritance-related

inversions.

● It solves the problem of unbounded priority inversion,
deadlock and chain blocking.

● While it solves the problem of unbounded priority
inversion, deadlock, chain blocking and
inheritance-related inversions.

● In HLP, highest priority task can not be denied access if
resource is free.

● While in PCP, highest priority task can be denied
access although resource is free if priority value is less
than CSC (Current System Ceiling).

● It is rarely used in real-life applications. ● While it is used in large applications.

Issues in using a resource sharing protocol
� Using PCP in dynamic priority systems

� Comparison of resource sharing protocols

1. PIP

• Simple and effectively overcomes the unbounded priority inversion problem

• Tasks may suffer from chain blocking and deadlock

• Requires minimal support from OS

2. HLP

• Requires moderate support from the OS

• Solves chain blocking and deadlock

• Can make the intermediate priority tasks undergo large
inheritance related inversion and can cause tasks to miss their deadlines

3. PCP

• Free from deadlock and chain blocking

• Priority of a task is not changed until a higher priority task requests the
resource

• Suffers much lower inheritance related inversions than HLP

Task Dependency

► Task Dependency is a relationship in which a task or milestone relies
on other tasks to be performed (completely or partially) before it can
be performed.

► A logical relationship can be a dependency between project tasks or
between tasks and milestones.

Handling task dependencies

� Develop a satisfactory schedule for a set of tasks
� Table Driven Algorithm: determines feasible schedule for a set of

periodic real time tasks whose dependencies are given
� EDF and RMA based schedulers: precedence constraints

among tasks can be handled in both EDF and RMA through the
following

all its predecessors complete

modification to the algorithm
� Don’t enable a taskuntil

execution

� Check the tasks waiting to be enabled (on account of its
predecessors completing their execution) after every task completes

Scheduling Real time Tasks in Multiprocessor and
distributed systems
� Multiprocessor task allocation
� Utilization balancing algorithm
▪ Maintains the tasks in increasing order of their utilizations
▪ It removes task one by one from the head of the queue and allocates

them to the least utilized processor time.
� Next fit algorithm for RMA
▪ Classifies the tasks into few classes based on the utilization of the task.
▪ One or more processors are assigned to each class of tasks
� Bin packing algorithm for RMA Tasks are assigned to processors such that

utilization at any processor does not exceed 1

Dynamic allocation of tasks
❑ Focused addressing and bidding
▪ Every processor maintains two tables

a) Status Table :contains information about the tasks which it has committed
to run, including information about the execution time and period of the
tasks.

b) system load table: contains latest load information of all other processors
of the system

�When a task arise at a processor ,it first checks whether the task can be
processed locally itself .if it can be processed ,it updates its status table
.if not it looks for a processor to which it can offload the task(consults its
system load table ,sends out request for bid(RFB) ,focused processor).
�Every processor on receiving a broadcast from a processor about the load
position updates the system load table
�High communication overhead

❑ Buddy algorithm
• Tries to overcome the high communication overhead of the focused
addressing and bidding algorithm

• Processor can be in any of two states
a) Under loaded: utilization is less than some threshold value
b) Overloaded: utilization is greater than the threshold value
• Processor broadcasts only to a buddy set(set of processors) when

the status of a processor changes
❑ Fault tolerant scheduling of tasks
• Can be achieved by scheduling additional copies in addition to the
primary copy of a task

Fault tolerant scheduling of tasks.

► Fault-tolerant scheduling algorithms provide the system with a means to continue
meeting deadlines until this can be completed;

► their role is therefore to provide the system with some breathing room before it
makes any longer-term adjustments to the task assignment and scheduling that
may be appropriate.

Fault Types
There are three types of faults:

● Permanent,
● Intermittent,
● Transient.

► A permanent fault does not die away with time, but remains until it is repaired as the

affected unit is replaced.

► This is an intermittent fault cycle between the fault–active and fault benign states.

► A transient fault dies away after some time.

Fault Detection

Fault detection can be done either online or offline.

Online detection goes on in parallel with normal system operation.

 Offline detection consists of running diagnostic tests

Fault tolerant Deadline Scheduling
A Backup Overloading Scheduling Algorithm The following steps form the procedure used to
implement the backup overloading algorithm

1) Arriving task

A task has four properties when it arrives, arrival time (ai), Ready time (ri), Deadline – (di) and worst
case computation time (ci) represented as Ti = (ai, ri, di, ci)

2) EDF schedulability

Check if all the tasks can be scheduled successfully using the earliest deadline first algorithm. If the
schedulability test fails, then reject the set of tasks saying that they are not schedulable.

3) Searching for timeslot

When task Ti arrives, check each processor to find if the primary copy (Pri) of the task can be
scheduled between ri and di. Say it is scheduled on processor Pi.

4) Try overloading
 Try to overload the backup copy (Bki) on an existing backup slot on any processor other than Pi. Note:
The backups of 2 primary tasks that are scheduled on the same processor must not overlap. If the
processor fails, it will not be possible to schedule the two backups simultaneously since they are on the
same time slot (overloaded).
5) EDF Algorithm
If there is no existing backup slot that can be overloaded, then schedule the backup on the latest possible
free slot depending upon the dead line of the task. The task with the earliest deadline is scheduled first.
6) De-Allocation of backups
If a schedule has been found for both the primary and backup copy for a task, commit the task, otherwise
reject it. If the primary copy executes successfully, the corresponding backup copy is deallocated.
7) Backup execution
 If there is a permanent or transient fault in the processor, the processor crashes and then all the backups
of the tasks that were running on this system are executed on different processors

 Clock in distributed system?

► A logical clock is a mechanism for capturing chronological and causal relationships
in a distributed system.

► Often, distributed systems may have no physically synchronous global clock.

Clock synchronization

► Clock synchronization is a topic in computer science and engineering that aims to
coordinate otherwise independent clocks.

► Even when initially set accurately, real clocks will differ after some amount of time
due to clock drift, caused by clocks counting time at slightly different rates

► In serial communication, clock synchronization can refer to clock recovery which
achieves frequency synchronization, as opposed to full phase synchronization. Such
clock synchronization is used in synchronization in telecommunications and
automatic baud rate detection.

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Computer_science&sa=D&source=editors&ust=1661492953929473&usg=AOvVaw2mXu-LYFz3C881IB4jFm9Y
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Engineering&sa=D&source=editors&ust=1661492953929630&usg=AOvVaw2CbLQ1TCTmmVq8HW7WS6TY
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Clock&sa=D&source=editors&ust=1661492953929737&usg=AOvVaw375pX-LNSnOoW0HgM9XF9w
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Clock_drift&sa=D&source=editors&ust=1661492953929826&usg=AOvVaw1w90iIC5zlNWl_my1IMwQT
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Serial_communication&sa=D&source=editors&ust=1661492953929920&usg=AOvVaw3wmjqcOh5NpNZsr0_nvBuS
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Clock_recovery&sa=D&source=editors&ust=1661492953930006&usg=AOvVaw2oquC1LXgdGTGeVmpzSeYI
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Phase_synchronization&sa=D&source=editors&ust=1661492953930095&usg=AOvVaw2XloN1p89seG7jNS6jOTFe
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Synchronization_in_telecommunications&sa=D&source=editors&ust=1661492953930198&usg=AOvVaw3jQ-GWr6MfQkyvV0J-SGEu
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Automatic_baud_rate_detection&sa=D&source=editors&ust=1661492953930295&usg=AOvVaw2fMwjSMgGjuXUYC0Vn9cWP

Centralized clock synchronization
► Centralized Clock Synchronization is an internal clock synchronization approach where clocks of

system are synchronized with one of clock of system.
► Clock synchronization is carried out to make all clocks in network agree on the same value.
centralized clock synchronization, one of clocks is appointed as master clock. Other clock of the system
are called slaves and these clocks are kept is synchronization with master clock.

1. Master Clock :

It is one of clocks of system which is designated as master clock. All remaining clocks are

synchronized with this clock. Master clock is also known as time server. It is single in number.

2. Slave Clocks :

Remaining clocks of systems after designated master clock are known as slave clocks. These clocks

are synchronized with master clock of system. These are various in number in system.

Working :

► Master clock sends its time to all other clocks (slave clocks) for synchronization.

► Server broadcasts its time after each ‘t’ time interval.

► Slave clocks receive time from master clock and set their time accordingly.

► Time interval ‘t’ is chosen quite carefully.

Clocks in DRTS
�Clocks in a system are useful for two main purposes

1. Determine time out
2. Time stamping
� Clock synchronization(external and internal)
1. Centralized clock synchronization

1.

2. Distributed clock synchronization

•Byzantine clock
•Byzantine clock is two faced clock, it can transmit different values
to different clocks at the same time.

Fault-tolerant scheduling

► Fault-tolerant scheduling algorithms provide the system with a means to

continue meeting deadlines until this can be completed;

► Their role is therefore to provide the system with some breathing room before it

makes any longer-term adjustments to the task assignment and scheduling that

may be appropriate.

Fault tolerance:
► Fault tolerance aims at guaranteeing the services delivered by the system despite the presence

or appearance of faults.

► Fault tolerance approaches are divided into two classes:

► Compensation techniques for which the structural redundancy of the system masks

the fault presence, and,

► Error detection and recovery techniques, that is, detection and then resumption

of the execution either from a safe state or after the operational structure

modification (reconfiguration).Error recovery techniques are split into two

sub-classes: Backward recovery aiming at resuming execution in a previously

reached safe state and Forward recovery aiming at resuming execution in a new

safe state.

Fault removal: Fault removal aims at detecting and eliminating existing faults. Fault

removal is older than those on fault prevention. Fault removal techniques are often

considered at the end of the model definition, particularly when an operational model

of the system is complete.

Fault Evasion: Means to estimate the present number, the future incidence, and the

likely consequences of faults.

Scheduling Algorithms are used for fault tolerance as well as fault
avoidance which may be classified as

1. First Come First Serve

 2. Shortest Job First

 3. Preemptive

 4. Non-Preemptive

 5. Round-Robin Technique

Basics of Fault-Tolerant Scheduling
The general method of responding to a failure is as follows:

► Transient Failures: If the system is designed only to withstand transients that go away

quickly, reexecution of the failed task or of a shorter, more basic, version of that task is

carried out. The scheduling problem reduces to ensuring that there is always enough time

to carry out such an execution before the deadline

► Software Failure: Here, the failure is that of the software, not of the processor. Software

diversity is used: backup software which is different from the failed software is invoked.

Again, we have to make sure, in preparing for software faults, that there is enough time for

the backup version to meet the original task deadline.

► Permanent Failure: Backup versions of the tasks assigned to the failed
processor must be invoked.

The steps are: –

► Provide each task with a backup copy.
► Place the backups in the schedule, either prior to operation for offline

scheduling or before guaranteeing the task for online scheduling.
► If a processor fails, activate one backup for each of the tasks that

have been affected.

Commercial Real-time Operating
Systems – An Introduction
► Introduction
► LynxOS
► QNX/Neutrino
► VRTX
► VxWorks
► Spring Kernel

► Commercial RTOS s different from traditional OS – gives more

predictability

► Used in the following areas such as:

► Embedded Systems or Industrial Control Systems

► Parallel and Distributed Systems

► E.g. LynxOS, VxWorks, pSoS, QNX , bluecat

► Traditionally these systems can be classified into a Uniprocessor,

Multiprocessor or Distributed Real-Time OS

Features of RTOS

�Clock and timer support: clock and timer services with adequate
resolution:

� Clock resolution denotes the time granularity provided by the system
clock of a computer. Thus the resolution of a system clock corresponds
to the duration of time that elapses between two successive clocks
ticks.

�Real time priority levels: static priority levels
� Fast task preemption: is the time duration for which a higher priority task

waits before it is allowed to execute

� Predictable and fast interrupt latency:
interrupt latency is the time delay between the occurrence of an interrupt and

the running of the corresponding ISR
� Support for resource sharing among RTT
�Requirements on memory management
� Support for asynchronous I/O: non blocking I/O
�Additional requirements for embedded RTOS:cost,size,power consumption

UNIX as a RTOS

� Popular and general purpose OS for mainframes
� Two most important problems that a real time programmer

faces while using unix for real time applications are
1. Non preemptive unix kernel
2. Dynamically changing priorities of tasks

Non preemptive kernel
� Means all interrupts are disabled when any OS routine runs

� A process running in kernel mode can’t be preempted by other processes. Unix system

preempt processes running in the user mode.

� Consequence of this is that even when a low priority process makes a system call ,the high

priority processes would have to wait until the system call by the low priority process

completes

� For RT applications this causes a priority inversion

� Kernel routine starts to execute ,all interrupts are disabled

.interrupts are enabled only after the OS routine completes

Dynamic Priority Levels

� Unix uses round robin scheduling of tasks with multilevel feedback

� Scheduler arranges tasks in multilevel queues

� At every preempting point the scheduler scans the multilevel queue from the

top(highest priority) and selects the first task of the non empty queue

� Each task is allowed to run for a fixed time quantum at a time , unix normally

uses one second time slice.

� The kernel preempts a process that doesn’t complete within its assigned time

quantum ,recomputed its priority and inserts it back into one of the priority queues

depending on the recomputed priority value of the task.

� The basic philosophy of Unix operating System is that the interactive tasks are

made to assume higher priority levels and are processed a the earliest . This gives

the interactive users good response time.

Pri(Ti,j) = Base(Ti)+CPU(Ti,j)+nice(Ti)
Pri(Ti,j)=priority of the task Ti at the end of jth time slice

Base(Ti)=base priority is established at process creation, based on the

specific type of process being created.

CPU(Ti,j)=weighted history of CPU utilization of the task Ti at
the end of jth time slice

Nice(Ti)=

U(Ti,j)=is the utilization of the task Ti

Other deficiencies of UNIX
� Insufficient device driver support
� Lack of RT file services
� File blocks are allocated as and when they are requested

by an application.
� no guarantee is given thatdisk space would be

available when a task writes a block to a file
� Traditional file writing policies result in slow writes
� Blocks of the same file may not be contiguously located

on the disk
� Inadequate timer services support
� Real time timer support is insufficientfor many hard RTA
� Clock resolution is 10ms is too bad for hard RTA

Unix based RTOS
Different approaches that have been undertaken to make unix suitable for RT applications

� Host target approach

1. Host target OS are popularly being deployed in embedded applications

2. RT application development is done on a host machine which is either traditional unix

or windows system supporting the program development environment, compilers,

editors, library, cross compilers , debuggers etc

3. RT application is developed on the host and is then cross compiled to generate code

for the target processor .the developed application is downloaded onto target board

that is to be embedded in a RTS via a serial port or a TCP/IP connection

4. ROM resident small RT kernel is used in the target board and once the program works

successfully it is fused in the ROM and becomes ready to deployed in applications

5. Ex:VxWorks,PSOS,VRTX

It needs cross compiler and cross debugger

�Extensions to the traditional unix kernel for RT Applications
I. by adding some RT capabilities(RT timer support, RT task

scheduler) over the kernel.
� Preemption Point approach
1. Preemption points in the execution of a system routine are

the instants at which the kernel data structure is consistent
2. In this point kernel can safely be preempted to make way

for any waiting higher priority RTT to run without
corrupting any kernel Data structures

3. The execution of a system call reaches a preemption point
the kernel checks to see whether any higher priority tasks
have become ready .if there is at least one ,it preempts the
processing of the kernel routine and dispatches the waiting
highest priority task immediately

4. Ex: HP UX, Windows CE

�Self host systems
1. A RTA is developed on the same OS on which the RTA

would finally run
2. Once the application runs satisfactorily on the host, it is

fused on a ROM or flash memory on the target board along
with a possibly stripped down version of the OS.

3. While deploying the application the OS modules that are
not essential during task execution are excluded to
minimize the size of the OS

4. Based on micro kernel architecture-only the core
functionalities such as interrupt handling and process
management are implemented as kernel routines. All other
functionalities such as memory management, file
management, device management etc are implemented as
add on modules which operate in the user mode

Non Preemptive kernel
▪ It is necessary to use locks at appropriate places in the kernel

 code to overcome the problem. Two types of locks are used in
fully preemptive unix systems

1. Kernel level locks
� Similar to traditional lock
� Inefficient due to context switch overhead
2. Spin lock

RT priorities
� Unix based RTS support dynamic ,RT and idle priorities
� Idle-lowest priority level, idle task run this level, static and are

not recomputed periodically
� Dynamic-recomputed periodically,
� RT-static priorities and are not recomputed during run time, hard

RTT operate at these levels

Windows as a RTOS

� Important features of windows NT
▪ Timer and clock resolutions are sufficiently

fine for most RTA
▪ Support for multithreading
▪ Availability of RT priority levels.
▪ Support 32 priority levels.

Shortcomings of windows NT

▪ Interruptprocessing-priority level of interrupts is

higher than user level threads.

▪ ISR(interrupt service routine):very critical processing is

performed.

▪ DPC(deferred procedure call):for low priority process.

▪ Support for resource sharing protocols-NT doesn’t provide

any support to RTT to share CR among themselves, simplest

approach is by careful priority settings while acquiring and

releasing locks, another possibility is to implement PCP

POSIX(portable operating system interface)
� Open software
▪ Open system-are based on open standards and are not copyrighted, allows users to intermix

h/w , s/w and networking solutions from different vendors, interoperability(systems from

multiple vendors can exchange information among each other) and portability

▪ Reduces the cost of development, increase the availability of add- on software packages

,enhances ease of programming and facilitates easy integration of separately developed

modules

▪ POSIX stands for Portable Operating System Interface, and is an IEEE standard designed to

facilitate application portability.

▪ POSIX is an attempt by a consortium of vendors to create a single standard version of UNIX.

▪ If they are successful, it will make it easier to port applications between hardware platforms.

▪ POSIX is an evolving group of standards, each of which covers different
aspects of the operating systems.
▪ Open software Standards

1. Open source-provides portability at the source code level
2. Open object-provides portability of unlinked object modules across

different platforms
3. Open binary-provide complete s/w portability across h/w platforms

based on a common binary language structure

�Overview of posix
▪ POSIX standard defines only interfaces to OS services and the semantics of these

services, but doesn’t specify how exactly the services are to be implemented

▪ Specifies the system calls that an OS needs to support

▪ Important parts of POSIX

1. POSIX 1: system interfaces and system call parameters

2. POSIX 2: shells and utilities

3. POSIX 3: test methods for verifying conformance to POSIX

4. POSIX 4: RT extensions

RT POSIX Standard

� Main requirements of POSIX-RT are

▪ Execution scheduling: support for real time priorities

▪ Performance requirements on system calls: worst case execution times

required for most RTOS services has been specified by POSIX -RT

▪ Priority levels: should be at least 32

▪ Timers: periodic and one shot timers

▪ RT files: RTF system should be support

▪ Memory locking

▪ Multithreading support

Benchmarking real time systems

● This benchmark defines a set of metrics to measure the
performance of a real time operating system.

● It's then proposed how the results are going to be weighted
together to form a single value which represents the RTOS
performance.

● Why benchmarking?
■ Embedded systems have limited resources.
■ Overhead of the chosen RTOS can impact your design.

Understanding the Results

FreeRTOS takes twice as much cycles to take and block on a semaphore than to signal and
switch to a new task.

 ○ Other OS do not exhibit the same behavior.

● Tracing the execution can provide insigher uCOS-III maximum time is 4.5x higher than
the average time.

 ● FreeRTOS maximum time is 2x higher than the average time.

 ● uCOS-III schedules a Tick Task in the tick interrupt handler.

Benchmarking real time systems
� MIPS(MillionInstructions Per Second)and FLOPS(FLoating Point

Operations Per Second)
� Rhealstone Metric

6 parameters of RTS are considered
1. Task Switching Time (tts)
2. Task Preemption Time(ttp)
3. Interrupt Latency Time (til)
4. Semaphore shuffling time(tss)
5. Unbounded Priority Inversion Time(tup)
6. Datagram Throughput time(tdt)

1. Task Switching Time (tts):

It is defined as the time it takes for one context switch among equal priority
tasks

2. Task Preemption Time(ttp):

I. Task switching time
II. Time to recognize the event enabling the higher

priority.
III. Time to dispatch

Defined as the time it takes to start execution of a higher priority task ,after the condition enabling the
task occurs .consists of the following 3 components

3. Interrupt Latency Time (til):

1.

2.

1. Hardware Delay in CPU recogonizing the interrupt.
2. Time to complete the current instruction.
3. Time to save the context of the currently running task.
4. Start the ISR

Consists of the following components

4. Semaphore shuffling time(tss):

It is defined as the time elapses between a lower priority task releasing a
semaphore and a higher priority task to start running

5. Unbounded Priority Inversion Time(tup):

tup=t1+t2

It is computed as the time it takes for the OS to recognize priority inversion(t1) and
run the task holding the resource and start T2 after T1 completes(t2)

6. Datagram Throughput time(tdt)

Indicates the number of kilobytes of data that can be transferred between two

tasks without using shared memory or pointers

Real-time database
► A real-time database is a database system which uses real-time processing to handle workloads

whose state is constantly changing.

► Real-time databases are traditional databases that use an extension to give the additional power to

yield reliable responses

► This differs from traditional databases containing persistent data, mostly unaffected by time.

► Real-time databases are useful for accounting, banking, law, medical records, multi-media, process

control, reservation systems, and scientific data analysis

► Real-time processing means that a transaction is processed fast enough for the result to come back

and be acted on right away

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Database_system&sa=D&source=editors&ust=1661492959237535&usg=AOvVaw1atfrj2usTRarvOhhSC20u
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Real-time_computing&sa=D&source=editors&ust=1661492959237664&usg=AOvVaw1b6PD93vzg-Px7VBgbzN21
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Persistence_(computer_science)&sa=D&source=editors&ust=1661492959237748&usg=AOvVaw0bYJp0ruxOAfvStOSWKFL4
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Medical_record&sa=D&source=editors&ust=1661492959237818&usg=AOvVaw3vgZW3KlSmMwE_JLZoeV0g
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Multimedia&sa=D&source=editors&ust=1661492959237881&usg=AOvVaw0mjt8s4VhqVzsrY10lkk2B

► Real-time databases are useful for accounting, banking, law, medical records, multi-media,

process control, reservation systems, and scientific data analysis.

► They use timing constraints that represent a certain range of values for which the data are valid.
This range is called temporal validity.

► A conventional database cannot work under these circumstances because the inconsistencies
between the real world objects and the data that represents them are too severe for simple
modifications.

► An effective system needs to be able to handle time-sensitive queries, return only temporally
valid data, and support priority scheduling.

► To enter the data in the records, often a sensor or an input device monitors the state of the
physical system and updates the database with new information to reflect the physical system
more accurately.

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Medical_record&sa=D&source=editors&ust=1661492959245368&usg=AOvVaw0XkFfXrfYfvIFKdyQ8Ct7O
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Multimedia&sa=D&source=editors&ust=1661492959245453&usg=AOvVaw0S9FKh6g2_uyKm4fiU3tqY

► When designing a real-time database system, one should consider how to represent valid time,

how facts are associated with real-time system.

► Also, consider how to represent attribute values in the database so that process transactions and

data consistency have no violations.

► In real-time databases, deadlines are formed and different kinds of systems respond to data that

does not meet its deadline in different ways.

► In a real-time system, each transaction uses a timestamp to schedule the transactions

► A priority mapper unit assigns a level of importance to each transaction upon its arrival in the

database system that is dependent on how the system views times and other priorities.

► The timestamp method relies on the arrival time in the system.

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Database_management_system&sa=D&source=editors&ust=1661492959252813&usg=AOvVaw3LhCEiDMHDPI6TugG7ro5r
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Real-time_computing&sa=D&source=editors&ust=1661492959252902&usg=AOvVaw2fpkS7rRuhcUI5EJPh9tMW
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Data_consistency&sa=D&source=editors&ust=1661492959252977&usg=AOvVaw3gJjDUFoHCECCLFlQuD-IO

Real-time databases are useful for

► accounting,
► banking,
► law,
► medical records,
► multi-media,
► process control,
► reservation systems,
► and scientific data analysis

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Medical_record&sa=D&source=editors&ust=1661492959260602&usg=AOvVaw2VRpYds2QL2uYID16RZ_W1
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Multimedia&sa=D&source=editors&ust=1661492959260705&usg=AOvVaw0XZyu5MX9N8RDPZl4Ol3iL

Examples of database applications

● Amazon
● CNN
● eBay
● Facebook
● Fandango
● Filemaker (Mac OS)
● Microsoft Access
● Oracle relational database
● SAP (Systems, Applications & Products in Data Processing)
● Ticketmaster
● Wikipedia
● Yelp
● YouTube
● Google
● My SQL

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Amazon_(company)&sa=D&source=editors&ust=1661492959292335&usg=AOvVaw1eOEV9MRdemhh2NnH8W5Gh
https://www.google.com/url?q=https://en.wikipedia.org/wiki/CNN&sa=D&source=editors&ust=1661492959292438&usg=AOvVaw1kHwNb8OTmXCTvt4z2Bvjc
https://www.google.com/url?q=https://en.wikipedia.org/wiki/EBay&sa=D&source=editors&ust=1661492959292506&usg=AOvVaw34k0w1QYY2tW5j0vt0jeMd
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Facebook&sa=D&source=editors&ust=1661492959292570&usg=AOvVaw1SfIbYsro-_U-AW0e-j4aA
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Fandango_(company)&sa=D&source=editors&ust=1661492959292638&usg=AOvVaw0wiZuvAJ5gOIXdDBYcDUvY
https://www.google.com/url?q=https://en.wikipedia.org/wiki/FileMaker&sa=D&source=editors&ust=1661492959292705&usg=AOvVaw06CVQMk5fhkCh-5wmIScCK
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Macintosh_operating_systems&sa=D&source=editors&ust=1661492959292775&usg=AOvVaw3Pf0cmSV0dxhEPAVTJBV9o
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Microsoft&sa=D&source=editors&ust=1661492959292837&usg=AOvVaw2khGx0QHsU5AZU-t-1h7yO
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Microsoft_Access&sa=D&source=editors&ust=1661492959292900&usg=AOvVaw3bMXNpv0AkvdG_jwodKDmV
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Oracle_Corporation&sa=D&source=editors&ust=1661492959292967&usg=AOvVaw0mgJQn7gKCXg7u7cfBMEST
https://www.google.com/url?q=https://en.wikipedia.org/wiki/SAP_ERP&sa=D&source=editors&ust=1661492959293027&usg=AOvVaw1nxWyQ0dW0_SGmmNAwSJIT
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Ticketmaster&sa=D&source=editors&ust=1661492959293087&usg=AOvVaw1ybKeNjwv8bNYG-rn8gzla
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Wikipedia&sa=D&source=editors&ust=1661492959293146&usg=AOvVaw3WTl1ZxKyq6UkLYQlqARwG
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Yelp&sa=D&source=editors&ust=1661492959293208&usg=AOvVaw1Pmpa3RcMa5eYc2P4yrDI0
https://www.google.com/url?q=https://en.wikipedia.org/wiki/YouTube&sa=D&source=editors&ust=1661492959293267&usg=AOvVaw3OfRYT2RxbHun9XwYYpmJ4
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Google&sa=D&source=editors&ust=1661492959293323&usg=AOvVaw3OZMyJVHF5Vo0Uq6mWUJZr
https://www.google.com/url?q=https://en.wikipedia.org/wiki/My_SQL&sa=D&source=editors&ust=1661492959293381&usg=AOvVaw35NiAUIyOEaC7s4pX4ASVc

Responses:

Below is a description of these responses:

Hard deadline

► If not meeting deadlines creates problems, a hard deadline is best.

► It is periodic, meaning that it enters the database on a regular rhythmic pattern.

► An example is data gathered by a sensor.

► These are often used in life critical systems

Firm deadline

► Firm deadlines appear to be similar to hard deadlines yet they differ from hard
deadlines because firm deadlines measure how important it is to complete the
transaction at some point after the transaction arrives.

► Sometimes completing a transaction after its deadline has expired may be harmful
or not helpful, and both the firm and hard deadlines consider this.

► An example of a firm deadline is an autopilot system.

Soft deadline

► If meeting time constrains is desirable but missing deadlines do not cause

serious damage, a soft deadline may be best.

► It operates on an aperiodic or irregular schedule.

► In fact, the arrival of each time for each task is unknown.

► An example is an operator switchboard for a telephone.

► Hard deadline processes abort transactions that have passed the deadline,

improving the system by cleaning out clutter that needs to be processed.

► Processes can clear out not only the transactions with expired deadlines but

also transactions with the longest deadlines, assuming that once they reach

the processor they would be obsolete.

► This means other transactions should be of higher priority.

► The goal of scheduling periods and deadlines is to update transactions guaranteed to

complete before their deadline in such a way that the workload is minimal.

► With large real-time databases, buffering functions can help improve performance

tremendously.

► A buffer is part of the database that is stored in main memory to reduce transaction

response time.

► In order to reduce disk input and output transactions, a certain number of buffers

should be allocated

Temporal database

A temporal database stores data relating to time instances.

 It offers temporal data types and stores information relating to past, present and future time.

Temporal databases could be uni-temporal, bi-temporal or tri-temporal.
More specifically the temporal aspects usually include valid time, transaction time or decision
time.

● Valid time is the time period during which a fact is true in the real world.
● Transaction time is the time at which a fact was recorded in the database.
● Decision time is the time at which the decision was made about the fact.

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Valid_time&sa=D&source=editors&ust=1661492959333151&usg=AOvVaw1fZVvX7HLAfRVS7jpYz3PK
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Transaction_time&sa=D&source=editors&ust=1661492959333304&usg=AOvVaw3g5J9dCgJZn4WEltkTOCuq
https://www.google.com/url?q=https://en.wikipedia.org/w/index.php?title%3DDecision_time%26action%3Dedit%26redlink%3D1&sa=D&source=editors&ust=1661492959333411&usg=AOvVaw32YQAQ0nY1caILXEKZ5ujw
https://www.google.com/url?q=https://en.wikipedia.org/w/index.php?title%3DDecision_time%26action%3Dedit%26redlink%3D1&sa=D&source=editors&ust=1661492959333517&usg=AOvVaw3loz0dKKctDOrDlYhSHVZm

Uni-Temporal

A uni-temporal database has one axis of time, either the validity range or the system
time range

Bi-Temporal

A bi-temporal database has two axis of time:
● valid time
● transaction time or decision time

Tri-Temporal

A tri-temporal database has three axes of time:

● valid time
● transaction time
● decision time

● This approach introduces additional complexities.
● Temporal databases are in contrast to current databases (not to be

confused with currently available databases), which store only facts
which are believed to be true at the current time.

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Current_database&sa=D&source=editors&ust=1661492959350812&usg=AOvVaw0ivtrZy6VpVc7Xi9_qqRk0

Features
Temporal databases support managing and accessing temporal data by
providing one or more of the following features:

● A time period datatype, including the ability to represent time periods
with no end (infinity or forever)

● The ability to define valid and transaction time period attributes and
bitemporal relations

● System-maintained transaction time
● Temporal primary keys, including non-overlapping period constraints

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Primary_keys&sa=D&source=editors&ust=1661492959358041&usg=AOvVaw1IxJGDlJE4tSsa4ZnMwzam

● Temporal constraints, including non-overlapping uniqueness and
referential integrity

● Update and deletion of temporal records with automatic splitting and
coalescing of time periods

● Temporal queries at current time, time points in the past or future, or
over durations

● Predicates for querying time periods, often based on Allen’s interval
relations

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Referential_integrity&sa=D&source=editors&ust=1661492959362980&usg=AOvVaw3FUXZhLTDPsvedFOgfBr8-
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Allen%2527s_interval_algebra%23Relations&sa=D&source=editors&ust=1661492959363077&usg=AOvVaw3aUnBqoz934duHt0SNVsUt
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Allen%2527s_interval_algebra%23Relations&sa=D&source=editors&ust=1661492959363189&usg=AOvVaw1tchMEDkr57m1FJnSlHoC4

Temporal Consistency

Temporal consistency of data has the following two main requirements

Absolute Validity :

This is the notion of consistency between the environment and its reflection in the
database given by the data collected by the system about the environment

Relative Consistency

This is the notion of consistency among the data are used to derive new data

Concurrency control in real-time databases

► The concurrency control of transactions in a real-time database must
satisfy not only the consistency constraints of the database but also the
timing constraints of individual transactions

► The correctness of transaction processing depends not only on maintaining
consistency constraints and producing correct results but also on the time at
which a transaction is completed.

► Transactions must be scheduled in such a way that they can be completed
before their corresponding deadlines expire.

► Concurrency control schemes normally ensures non interference among
transactions by restricting concurrent transactions to be serializable.

► A database is called serializable ,If the database operations carried out by
them is equivalent to some seral execution of these transactions

The main categories of concurrency control mechanisms are:

● Optimistic - Delay the checking of whether a transaction meets the isolation and other
integrity rules until its end, without blocking any of its operations , and then abort a
transaction to prevent the violation, if the desired rules are to be violated upon its
commit. An aborted transaction is immediately restarted and re-executed, which incurs
an obvious overhead. If not too many transactions are aborted, then being optimistic is
usually a good strategy.

● Pessimistic - Block an operation of a transaction, if it may cause violation of the rules,
until the possibility of violation disappears. Blocking operations is typically involved
with performance reduction.

● Semi-optimistic - Block operations in some situations, if they may cause violation of
some rules, and do not block in other situations while delaying rules checking to
transaction's end, as done with optimistic.

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Optimistic_concurrency_control&sa=D&source=editors&ust=1661492959388750&usg=AOvVaw34CKwdjhpe8mYDTnexgTWX

 For example,

Both the update and query operations on the tracking data for a missile must be
processed within a given deadline: otherwise, the information provided could be
of little value

Commercial real-time databases

► A commercial database is a database developed and maintained by a commercial
entity that is generally made available to customers and potential customers

► A commercial real time database need to avoid using anything that can introduce
unpredictable latency.

► It need to avoid using I/O operations , message passing or garbage collection .

► Real-time databases are useful for accounting, banking, law, medical records,
multi-media, process control, reservation systems, and scientific data analysis.

Some of the Commercial Databases are :

► Aerospike DBS
► ArangoDB
► eXtremeDB
► Ehcache
► GigaSpaces
► InfinityDB
► MonetDB
► solidDB etc.

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Aerospike_(database)&sa=D&source=editors&ust=1661492959410103&usg=AOvVaw1fP8tJ8eotGtlbWYF4j67y
https://www.google.com/url?q=https://en.wikipedia.org/wiki/ArangoDB&sa=D&source=editors&ust=1661492959410194&usg=AOvVaw2gMCaw5_-qzyI1Z-Qfxohg
https://www.google.com/url?q=https://en.wikipedia.org/wiki/EXtremeDB&sa=D&source=editors&ust=1661492959410266&usg=AOvVaw0N3rGr7MGP9mDBBVQQX0ED
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Ehcache&sa=D&source=editors&ust=1661492959410331&usg=AOvVaw2Toab0ldjhz94BPHUHiaPZ
https://www.google.com/url?q=https://en.wikipedia.org/wiki/GigaSpaces&sa=D&source=editors&ust=1661492959410394&usg=AOvVaw0iIBmAhwO4IzQupfOjdOws
https://www.google.com/url?q=https://en.wikipedia.org/wiki/InfinityDB&sa=D&source=editors&ust=1661492959410458&usg=AOvVaw2rt2XkrscdmMRzErdYUBAQ
https://www.google.com/url?q=https://en.wikipedia.org/wiki/MonetDB&sa=D&source=editors&ust=1661492959410525&usg=AOvVaw15iLyid5RCIcW0VkEWfDaD
https://www.google.com/url?q=https://en.wikipedia.org/wiki/SolidDB&sa=D&source=editors&ust=1661492959410586&usg=AOvVaw3G_oqgc90aooRJMr0E0i45

Real-time Communication

► Real-time communications (RTC) is a term used to refer to any live telecommunications that occur

without transmission delays.

► RTC is nearly instant with minimal latency. RTC data and messages are not stored between transmission

and reception.

► RTC is generally a peer-to-peer, rather than broadcasting or multicasting, transmission.

► Examples of RTC include

► The Internet, land lines, mobile/cell phones, instant messaging (IM), Internet relay chat, video

conferencing, teleconferencing and robotic telepresence. Emails, bulletin boards and blogs are not RTC

channels but occur in time-shifting mode, where there is a significant delay between data transmission

and reception.

► RTC features were first introduced in Windows XP and included Microsoft Office Communicator,
MSN Messenger, Windows Messenger, real-time voice and video and IM

.

► Microsoft operating systems and software applications include RTC platforms comprised of
RTC-enabled component sets.

► In RTC, there is always a direct path between the source and the destination. Although the link
might contain several intermediate nodes, the data goes from source to destination without
being stored in between them.

https://www.google.com/url?q=https://searchnetworking.techtarget.com/definition/node&sa=D&source=editors&ust=1661492959429108&usg=AOvVaw2FXKVb81ci2cECvoLps7bj

Real-time communications can take place in half-duplex or full-duplex modes:

● Half-duplex RTC. Data transmission can happen in both directions on a single carrier

or circuit but not at the same time.

● Full-duplex RTC. Data transmission can occur in both directions simultaneously on a

single carrier or circuit.

https://www.google.com/url?q=https://searchnetworking.techtarget.com/definition/half-duplex&sa=D&source=editors&ust=1661492959436180&usg=AOvVaw28sX-S7JbL3LCvC320d4K7
https://www.google.com/url?q=https://searchnetworking.techtarget.com/definition/full-duplex&sa=D&source=editors&ust=1661492959436315&usg=AOvVaw0QObCuolPl1eni9ASXebwW

Real-time communications examples
Real-time communications tools and applications are many and varied, ranging from
old-school telephony to cloud communications services.

They include the following:

● fixed-line telephony
● mobile telephony
● voice over IP (VoIP)
● teleconferencing
● video calling
● video conferencing
● presence
● file sharing
● screen sharing
● automatic, live meeting transcription
● team messaging (real-time or near-real-time)
● one-to-one IM (real-time or near-real-time)
● live customer chat (real-time or near-real-time)
● robotic telepresence
● two-way or multiway amateur radio

https://www.google.com/url?q=https://searchunifiedcommunications.techtarget.com/definition/VoIP&sa=D&source=editors&ust=1661492959455755&usg=AOvVaw2TsI5LEKSCetslZUe3SHGF
https://www.google.com/url?q=https://searchunifiedcommunications.techtarget.com/definition/presence-technology&sa=D&source=editors&ust=1661492959455860&usg=AOvVaw0TMjNnURL5tScYAA2OQ_3U
https://www.google.com/url?q=https://searchenterpriseai.techtarget.com/definition/telepresence-robot&sa=D&source=editors&ust=1661492959455949&usg=AOvVaw1RTLdIgReFR8SmhYWHzwoD
https://www.google.com/url?q=https://searchmobilecomputing.techtarget.com/definition/amateur-radio&sa=D&source=editors&ust=1661492959456030&usg=AOvVaw18wZQQ8TSGNeU25vpP9RiJ

THANK YOU

